State-of-the-art and tendencies of intelligent construction in China

Zhiliang Ma Department of Civil Engineering, Tsinghua University

Tsinghua University

My background

- 1986 obtained Bachelor Degree in <u>Civil Engineering</u> at Tsinghua University, China
- 1989 obtained Master Degree in <u>Civil Engineering</u> at Nagoya University, Japan
- 1992 obtained PhD in <u>Civil Engineering</u> at Nagoya University, Japan
- 1993 Joined Tsinghua University to teach and research on Application of Information Technology in Civil Engineering

Agenda

- 1 Big data about construction industry
- 2 Origin
- 3 <u>State-of-the-art</u>
- 4 Tendencies
- 5 <u>Conclusions</u>

1. Big data about construction industry

Gross output and its growth rate of construction industry in China from 2008 to 2023

Number of firms and its growth rate of construction industry in China from 2008 to 2023

Number of total practitioners and its growth rate of construction industry in China from 2008 to 2023

Construction completed floor area and its growth rate of construction industry in China from 2008 to 2023

Construction industry of China vs. Germany on the relative aspects

	Population (Million)	Gross Output Value 2023 (Billion USD)	Growth Rate of Gross Output Value 2023	Number of Firms 2023	Number of Practitioners 2023 (Million)
German	81	202.4	5.5%	15,312	2.5
China	1,390	4,325	1.3%	157,929	52.5
Ratio	1:17	1:21	4:1	1:5	1:21

2. Origin

• Intelligent construction is a major trend

Ministry of Housing and Urban-Rural Development (MHURD) et al. July, 2020

Guiding Opinions on Promoting the Collaborative Development of Intelligent Construction and Construction Industrialization

By 2035, entering the ranks of world powers on intelligent construction

September, 2020

Several Opinions on Accelerating the Development of New Construction Industrialization

Promote the development of intelligent construction technology

Industry Development Reports on Intelligent Construction

By Information Center of MHURD Published in 2021 and 2023 Expert group established Ontline formulated Best experts invited to write Questionnaire survey conducted Reviewed several rounds

Both theory and case studies included

Intelligent Construction: Definition

- A pattern of construction
- which facilitates
- the phases of design, manufacturing and construction
- of engineering projects,
- to raise the intelligent level of the processes
- through applying intelligent systems,
- so as to obtain economic and social benefits

Intelligent System and Intelligent Level

Intelligent systems

represent the intelligent technology and relevant technologiesbased computer systems that

possess the abilities that only human beings possess

and are used to replace human beings or reduce the requirement for human beings

Intelligent level

represents the level for replacing human beings or reducing the requirement for human beings

Intelligent technology and relevant technologies

清华大学土木工程系 马智亮

Classification of Intelligent Systems

3. State-of-the-art

Hot Application Points: Definition and Classification
 Definition

Hot and typical scenario for applying intelligent systems Classification: 6 categories

According to separate phases

Intelligent design, ~ manufacturing, ~ construction, and

~ operation and maintenance

According to common items to some phases

Intelligent equipment and Construction industry internet

Hot application points of intelligent construction in China

Smart construction site	74.21%
Digitized project management	51.13%
Intelligent construction of prefabricated	39.37%
Parametric design	34.84%
Collaborative design	30.77%
Standardized design	30.77%
Intelligent approval of drawings	28.51%
Visualized operation and maintenance	22.17%
Lifecycle management of devices	19.46%
Performance-based design	18.55%
Intelligent operation and maintencance	16.29%
Tracing-supported quality management	14.93%
Digital delivery	14.48%
Detailed design of components	13.57%
Manufacturing mangement of components	11.76%
Energy-consumption management of	10.86%
Intelligent manufacturing of devices	9.50%
Storage and transportation.	5.43% Extracted from "Industry Development
Unmanned factory	3.62% Reports on Intelligent Construction"
Others	3.62%

Implementation ratio of hot application points computed from the questionnaire results (Valid returns 221: Construction firms 57.01%; Owners and developers 20.81%, Others 22.18%)

Case 1 Internet plus-based management system for manufctrg. of precast concrete (PC) components: Tsinghua Univ.

• Background

A few years ago: backward techniques and management tools

清华大学土木工程系 马智亮

• Key problems

Low working efficiency, inability to effectively utilize production capacity, poor schedule controllability

Objectives

By utilizing internet plus technologies (including BIM, IoT, and mobile terminals etc.) and optimum techniques

To develop an intelligent system to facilitate

real-time monitoring and control of manufacturing process and optimized decision-making support

✓ S 127.0.0.1:8080/x5/UI2/ × ← → C ① 127.0.0.1:80	080/x5/UI2/v_/portal/pc/index.w?de	vice=pc#!(\$model/UI	2/MySystem/Or	derManage/proce	ss/OrderManage/mainActivity.w)	<u> </u>	□ × @☆:
🔅 预制构	件生产过程优化	管理系统		■ 已打	J开功能 待办任务 11	✿ 刷新	
订单信息管理	里					>	‹
订单基本信息							
+ 新增 -	删除隣 保存○ 生成质检任务	刷新 く 第-	一页 く	上页 > 下	页 > 最后页		
订单编号 🖣	订单名称	创建日期	客户编号	客户名称	客户地址	联系电话	3
02	湖畔家园#10楼	2016-04-15	WK01	万科	合肥合淮路大杨镇十张村	6572364	(
01 五	和万科长阳天地项目#12樹	娄 2016-04-05	WK01	万科	房山长阳镇城铁篱笆房站	6351095	(
∢ 项目模型	?						•

Typical User Interface of System

System Configuration

Business process and functional modules

清华大学土木工程系 马智亮

• Key technical innovative elements

Taking advantage of intelligent technology and relevant ~ BIM, Mobile terminal, IoT(RFID)

Supporting large scale, automatic and agile production Facilitating

Optimization of production planning

Optimization of adjustment of production plan

Optimization of path for material re-dispatch

Model for optimization of production planning

 Optimization objectives Minimization of Workstation Idle time Minimization of Contract penalty and Storage cost Minimization of makespan Minimization of Type Change of precast components 	• Formulas for optimization objectives $\begin{split} & \text{Min } f_{WI} = \sum_{l=1}^{L} \sum_{k=1}^{6} \left[C(J_{l,n_{l}}, M_{l,k}) - \sum_{i=1}^{n_{l}} P_{l,i,k} \right] \\ & \text{Min } f_{DI} = \sum_{l=1}^{L} \left\{ \sum_{i=1}^{n_{l}} \tau_{l,i} * \text{Max} \left[0, C(J_{l,i}, M_{l,6}) - d_{l,i} \right] + \sum_{i=1}^{n_{l}} \epsilon_{l,i} * \text{Max} \left[0, d_{l,i} - C(J_{l,i}, M_{l,6}) \right] \right\} \\ & \text{Min } f_{MS} = \text{Max}_{\forall l \in N^{+} l \leq L} C(J_{l,n_{l}}, M_{l,6}) \\ & \text{Min } f_{TC} = \sum_{s=1}^{S} \{ \text{ETN}_{s} + \alpha * \text{ECT}_{s} \} \end{split}$
 Optimization constraints Constraint of productivity Constraint of the size of curing rooms Constraint of the eight-hour day working Constraint of the buffer size between workstations Constraint of the quantity of molds Constraint of the quantity of production pallets 	$ \label{eq:starting} \begin{array}{ll} \bullet \mbox{ Formulas for constraints} \\ & s(J_{1,i},M_{1,k}) \geq \begin{cases} Max[C(J_{L(i-1)},M_{1,k}),C(J_{1,i},M_{1,(k-1)})], & \mbox{if } k \neq 4 \\ C(J_{1,i},M_{1,(k-1)}), & \mbox{if } k = 4 \end{cases} \\ & c(J_{1,i},M_{1,k}) \geq S(J_{1,i},M_{1,k}) + P_{1,i,k} \\ & s(J_{1,i},M_{1,k}) \geq Max \frac{Y_{1}^{th}}{Y_{1}^{vh} + y_{1} + z_{1}} C(J_{1,y},M_{1,k}) \\ & c(J_{1,i},M_{1,a}) \geq \begin{cases} T, & \mbox{if } T \leq 24D + H_{W} + H_{E} \\ 24(D+1) + P_{1,i,k}, & \mbox{if } T > 24D + H_{W} + H_{E} \\ \end{cases} \\ & c(J_{1,i},M_{1,k}) \geq \begin{cases} T, & \mbox{if } T < 24D + H_{W} \\ 24(D+1), & \mbox{if } 24D + H_{W} \leq T \leq 24(D+1) \\ T, & \mbox{if } T > 24(D+1) \end{cases} \\ & c(J_{1,i},M_{1,k}) \geq \begin{cases} T, & \mbox{if } T < 24D + H_{W} \\ 24(D+1), & \mbox{if } T \geq 24D + H_{W} \\ T, & \mbox{if } T \geq 24D + H_{W} \\ T, & \mbox{if } T \geq 24D + H_{W} \\ T, & \mbox{if } T \geq 24D + H_{W} \\ T \geq (J_{1,i},M_{1,k}) \geq \begin{cases} T, & \mbox{if } T < 24D + H_{W} \\ T, & \mbox{if } T \geq 24D + H_{W} \\ T \geq (J_{1,i},M_{1,k}) \geq S(J_{1,(i-B_{1,k})},M_{1,(k+1)}) \\ & s\left(J_{1,i}^{j,\$},M_{1,1}\right) \geq Min\left\{Max_{VIeN^{+} I \leq L,VYeN^{+} Y \leq i,VXeN^{+} X < J}[C(J_{1,y,x},M_{1,6})]\right\} \\ & s\left(J_{1,i}^{j},M_{1,1}\right) \geq Min\left\{Max_{VIeN^{+} I \leq L,VYeN^{+} Y \leq i,VXeN^{+} X < J}[C(J_{1,y,x},M_{1,6})]\right\} \\ \end{array}$

Comparison with current approach

• Dispatching rule-based approach

- Typical dispatching rules
 - Earliest delivery date
 - Minimum makespan
 - Minimum margin time
 - Critical path

清华大学土木工程系 马智亮

References

Case 2 Intelligent manufacturing system for steel structures: CSCEC Steel Structures Corporation

Background

Characteristics of steel structures in China

There exist many unique joints

The equipment of western countries is not fully applicable

Dedicated manufacturing system is required

The company developed a comprehensive production line

Layout of intelligent production line of steel structures

清华大学土木工程系 马智亮

清华大学土木工程系 马智亮

• Benefits

Working efficiency: 20% up Operation cost: 20%+ down including human cost Manufacturing time: 30%+ shortened Defect rate of products: 20%+ down

Case Study

Construction Automation and Robotics: From One-Offs to Follow-Ups Based on Practices of Chinese Construction Companies

Shiyao Cai¹; Zhiliang Ma²; Miroslaw J. Skibniewski³; and Jianfeng Guo⁴

Abstract: The follow-up issue is one of the major factors that limit the application of construction automation and robotics. Specifically, many research results with fundamentally good ideas end up gathering dust on a shelf without any follow-up research and development (R&D) or applications. Nevertheless, some construction companies have successful experience in the follow-up issue. Therefore, this study presents and analyzes the processes from R&D to follow-ups of four representative Chinese construction companies that developed their own automation and robotic products and implemented them continuously. Based on the four cases, an intercase analysis was conducted, and 11 influential factors that lead to successful follow-ups were identified. To understand the identified factors effectively, they were then categorized according to an existing theoretical framework, i.e., the technology–organization–environment (TOE) framework, which is widely used in studies on innovation adoption. As a result, four technological factors (interdisciplinary cooperation, continuous R&D, pilot test, and technological foresight), five organizational factors (company size, human resources, development strategies, organizational structure, and management system), and two environmental factors (market demand and competitive pressure) are obtained. Suggestions are proposed for both the technology providers and adopters, such as establishing industrial alliances, training interdisciplinary personnel and skilled workers, and regions with the need to implement construction automation and robotics because the analysis has not been confined to the practice in China. **DOI: 10.1061/(ASCE)CO.1943-7862.0001910.** © *2020 American Society of Civil Engineers*.

Author keywords: Automation and robotics; Research and development (R&D); Follow-up issue; Construction company.

4. Tendencies

• Development of intelligent construction Current level of development is still low The goal should to develop more advanced intelligent systems The key is to innovation both in industry and academia Two aspects are categorized for innovation Technical aspects and managerial aspects Major trendy points are proposed with regard to the two aspect

Extracted from "Industry Development Reports on Intelligent Construction"

Trendy points of intelligent construction in China

Case 3 Intelligent system for reuse of information resources of building construction firms in decision-making process: Tsinghua Univ.

Research objectives

Based on BIM technology, develop an innovative approach taking advantage of information resources.

Identify major information resources

Establish framework for utilizing information resources based on BIM technology

Develop a prototype system

BIM is used as a base because it provides a standard way for storing information to facilitate its management

Classification of decision-making activities

Project phase	Code	Project management decision activities	Managerial subject	Code	Firm management decision activities
	PA1	Decide construction method	Plan	EA1	Develop plan
Didding	PA2	Develop overall schedule		EA2	Control project bidding
Diddilig	PA3	Decide bidding price		EA3	Control project contractor
	PA4	Prepare bidding document	Business	EA4	Control project schedule
Contracting	PA5	Select sub-contractor		EA5	Control project cost
Contracting	PA6	Assess risk		EA6	Control project quality
	PA7	Decide construction layout		EA7	Control project safety
	PA8	Develop detailed schedule	Tashnalagu	EA8	Decide construction method
D	PA9	Develop cost plan	Technology	EA9	Update firm quota
	PA10	Develop material plan	Motorial	EA10	Decide material procurement
Freparation	PA11	Develop equipment plan	Waterial	EA11	Coordinate material
PA PA PA	PA12	Develop labor plan	Equipment	EA12	Decide equipment procurement
	PA13	Develop quality control plan	Equipment	EA13	Coordinate equipment
	PA14	Prepare constr. plan document		EA14	Predict labor need
	PA15	Control project contract	Human resource	EA15	Deploy employee
	PA16	Control project schedule		EA16	Assess employee
Construction	PA17	Control project cost		EA17	Estimate cost
	PA18	Control project quality	Finance	EA18	Account cost
	PA19	Control project safety		EA19	Evaluate client
Maintenance	PA20	Evaluate sub-contractor/supplier	Client/sub	EA20	Evaluate sub-contractor
	PA21	Evaluate project	cheffe/sub-	EA21	Evaluate supplier
	PA22	Decide maintenance method	contractor/supplier		

Classification of construction firm information resource items

Category	Code	Information resource items	Category	Code	Information resource items
Plan	EI1	Long-term plan	Material	EI14	Material transportation record
	EI2	Annual plan		EI15	Equipment procurement/rent record
	EI3	Quarter plan	Equipment	EI16	Equipment use record
	EI4	Project bidding record		EI17	Equipment maintenance record
	EI5	Project contract record		EI18	Employee performance record
Dusinaas	EI6	Project schedule record	Human resource	EI19	Deployment of staffs record
Business	EI7	Project cost record	Finance	EI20	Cash flows record
	EI8	Project quality record		EI21	Income and expenditure record
	EI9	Project safety record		EI22	Cost accounting record
Technology	EI10	Construction method	Client /sub-	EI23	Client record
	EI11	New tech./material record		EI24	Client cooperation record
Motorial	EI12	Material procurement record	contractor/supplier	EI25	Sub-contractor/supplier record
wateria	EI13	Material in/out record		EI26	Sub-contractor/supplier cooperation record

Classification of project information resource items

Category	Code	Information resource items	Category	Code	Information resource items
Design	PI1	General info. of design	Construction plan	PI20	Quality control plan detail
	PI2	Design change record		PI21	Construction plan document
	PI3	Design document/drawing		PI22	Construction layout drawing
	PI4	General info. of bidding	Sabadula	PI23	Planned schedule detail
Didding	PI5	Overall schedule	Schedule	PI24	Actual schedule detail
Blading	PI6	Project bidding detail	Labor	PI25	Labor work record
	PI7	Bidding document		PI26	Material procurement record
Sub-	PI8	Certificate info.	Matarial	PI27	Material in/out record
contractor/supplier	PI9	Cooperation record	Material	PI28	Material consumption record
	PI10	General info. of contract		PI29	Material inspection record
Contract	PI11	Claim record		PI30	Equipment procurement/rent record
Contract	PI12	Contract change record	E automant	PI31	Equipment in/out record
	PI13	Contract document	Equipment	PI32	Equipment consumption record
Construction plan	PI14	General info. of constr. plan		PI33	Equipment inspection record
	PI15	Schedule detail	Cost	PI34	Direct cost record
	PI16	Cost plan detail	Cost	PI35	Indirect cost record
	PI17	Material plan detail	Quality	PI36	Quality inspection record
	PI18	Equipment plan detail	Safety	PI37	Safety method record
	PI19	Labor plan detail			

IFC entities and expanded entities used to represent data of material procurement

清华大学土木工程系 马智亮

📙 施工企业信息资源利用系统

系统登录 信息资源常规利用 信息资源导出 帮助

🔮 🗙 🔍 🗷 🔞

Interfaces of BIM-based System for Information Reuse of Construction Firms

5. Conclusions

This keynote presents the state-of-the-art and the tendency of intelligent construction in China Hope that it is helpful to you.

Thank you for your attention